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Abstract

In this paper we prove that a modular function space satisfies a
property that implies uniform-Opial and uniform-Kadec-Klee proper-
ties with respect to convergence almost everywhere. A fixed point
result is also established generalizing recent works in L1.
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1 Introduction and Preliminaries.

A problem that mathematician dealt with for almost fifty years is how to
generalize the classical function spaces Lp. A first attempt was made by
Orlicz and Birnbaum [3]. Their approach consisted in considering spaces of
functions with some growth properties different from the power type growth
control provided by the Lp-norm. This generalization found many applica-
tions in differential and integral equations with kernels of nonpower types.
Another generalization was given by Luxemburg [20] (see also [21]). The
main idea is to consider, in a measure space, a functional that has the prop-
erties of a norm plus a monotony condition. The more abstract generalization
was given by Nakano [24] based on replacing the particular integral form of
the functional by an abstractly one that satisfy some good properties. This
functional was called a modular. Let us add that this notion was redefined
and generalized by Orlicz and Musielak [23]. In this work we consider the
formulation given by Kozlowski [16].

We start with a brief recollection of basic concepts and facts of the theory
of modular spaces.

Definition 1.1. Let X be an arbitrary vector space.

(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x,y in
X,

(i) ρ(x) = 0 iff x = 0,

(ii) ρ(α x) = ρ(x) for every scalar α with |α| = 1,

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1 and α ≥ 0, β ≥ 0.

(b) If (iii) is replaced by

(iii)’ ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β = 1 and α ≥ 0, β ≥ 0,

we say that ρ is a convex modular.

(c) A modular ρ defines a corresponding modular space, i.e the vector space
Xρ given by

Xρ = {x ∈ X; ρ(λx) → 0 as λ → 0}.
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In general the modular ρ is not subadditive and therefore does not behave
as a norm or a distance. But one can associate to a modular an F -norm.
Recall that a functional ||.|| : X → [0,∞] defines an F -norm if and only if

(1) ||x|| = 0 if and only if x = 0,

(2) ||αx|| = ||x|| whenever |α| = 1,

(3) ||x + y|| ≤ ||x||+ ||y||,

(4) ||αnxn − αx|| → 0 if αn → α and ||xn − x|| → 0.

An F -norm defines a distance on X by

d(x, y) = ||x− y||.

The linear metric space (X, d) is called an F -space if d is complete.

Definition 1.2. The modular space Xρ can be equipped with an F -norm
defined by

||x||ρ = inf{α > 0; ρ(
x

α
) ≤ α}.

When ρ is convex the formula

||x||ρ = inf{α > 0; ρ(
x

α
) ≤ 1}

defines a norm which is frequently called the Luxemburg norm.

It is clear that ||xn||ρ → 0 if and only if ρ(βxn) → 0 for every β > 0. One
can easily observe that α → ρ(αx) is increasing for every x ∈ X.
As a classical example we may give the Orlicz’ modular defined for every
measurable real function f by the formula

ρ(f) =
∫
<

ϕ(|f(t)|)dm(t),

where m denotes the Lebesgue measure in < and ϕ : < → [0,∞) is continu-
ous, ϕ(0) = 0 and ϕ(t) →∞ as t →∞.
The modular space induced by the Orlicz’ modular ρϕ is called the Orlicz
space Lϕ.
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Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of
Ω. Let P be a δ-ring of subsets of Σ, such that E ∩ A ∈ P for any E ∈ P
and A ∈ Σ. Let us assume that there exists an increasing sequence of sets
Kn ∈ P such that Ω =

⋃
Kn. In an other word, the family P plays the role

of the δ-ring of subsets of finite measure. By E we denote the linear space of
all simple functions with supports from P . By M we will denote the space of
all measurable functions, i.e. all functions f : Ω → < such that there exists
a sequence {gn} ∈ E , |gn| ≤ |f | and gn(ω) → f(ω) for all ω ∈ Ω. By 1A we
denote the characteristic function of the set A.

Let us add that a set function µ : Σ → [0,∞] is called a σ-subadditive
measure if

(i) µ(∅) = 0,

(ii) µ(A) ≤ µ(B) for any A ⊂ B,

(iii) µ(
⋃

An) ≤ ∑
µ(An) for any sequence of sets An ∈ Σ.

Definition 1.3 A functional ρ : E × Σ → [0,∞] is called a function
modular if

(P1) ρ(0, E) = 0 for any E ∈ Σ,

(P2) ρ(f, E) ≤ ρ(g, E) whenever |f(ω) ≤ |g(ω)| for any ω ∈ Ω, f, g ∈ E and
E ∈ Σ,

(P3) ρ(f, .) : Σ → [0,∞] is a σ-subadditive measure for every f ∈ E,

(P4) ρ(α, A) → 0 as α decreases to 0 for every A ∈ P, where ρ(α, A) =
ρ(α1A, A),

(P5) if there exists α > 0 such that ρ(α, A) = 0, then ρ(β, A) = 0 for every
β > 0,

(P6) for any α > 0 ρ(α, .) is order continuous on P, that is ρ(α, An) → 0 if
{An} ∈ P and decreases to ∅.

The definition of ρ is then extended to f ∈M by

ρ(f, E) = sup{ρ(g, E); g ∈ E , |g(ω)| ≤ |f(ω)| ω ∈ Ω}.
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This will enable us to define ρ(α, E) for sets E not in P ; for the sake of
simplicity, we write ρ(f) instead of ρ(f, Ω).

Definition 1.4 A set E is said to be ρ-null if and only if ρ(α, E) = 0 for
α > 0. A property p(ω) is said to hold almost everywhere (ρ-a.e.) if the set
{ω ∈ Ω; p(ω) does not hold } is ρ-null. For example we will say frequently
fn → f ρ-a.e.

Note that a countable union of ρ-null sets is still ρ-null [16, pages 15-16].
In the sequel we will identify sets A and B whose symmetric difference A∆B
is ρ-null; similarly we will identify measurable functions which differ only on
a ρ-null set.

It is easy to see that the functional ρ : M→ [0,∞] is a modular in the
sense of Definition 1.1. The modular space determined by ρ will be called a
modular function space and will be denoted by Lρ. Recall that

Lρ = {f ∈M; lim
α→0

ρ(α f) = 0}.

Let us recall some basic facts about modular function spaces. For proofs
and details the reader is referred to [16,22].

Theorem 1.1

(1) (Lρ, ||.||ρ) is a complete space and the F -norm ||.||ρ is monotone with
respect to the natural order in M.

(2) If there is a number α > 0 such that ρ(α(fn−f)) → 0 then there exists
a subsequence {gn} of {fn} such that gn → f ρ-a.e.

(3) (Egoroff’s Theorem) If fn → f ρ-a.e. then there exists an increas-
ing sequence of sets Hk ∈ P such that Ω =

⋃
Hk and {fn} converges

uniformly to f on every Hk.

(4) Define
L0

ρ = {f ∈M; ρ(f, .) is order continuous}
and

Eρ = {f ∈M; αf ∈ L0
ρ for every α > 0}.

Then
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(4.1) Eρ ⊂ L0
ρ ⊂ Lρ,

(4.2) Eρ has the Lebesgue property, i.e. ||f 1Dn||ρ → 0 if f ∈ Eρ and
Dn decreases to ∅,

(4.3) Eρ is the closure of E (in the sense of ||.||ρ).

(5) (Vitali’s Theorem) If fn ∈ Eρ and fn → f ∈ Lρ ρ-a.e., then the
following conditions are equivalent

(i) f ∈ Eρ and ||fn − f ||ρ → 0,

(ii) for every α > 0 the subadditive measures ρ(αfn, .) are equicontin-
uous, i.e.

lim
k→∞

sup
n

ρ(αfn, Dk) = 0,

for every sequence {Dk} ∈ Σ that decreases to ∅.

(6) (Lebesgue’s Theorem) If fn, f ∈ M, fn → f ρ-a.e. and there exists a
function g ∈ Eρ such that |fn| ≤ |g| ρ-a.e. for all n, then ||fn−f ||ρ → 0.

(7) For fn, f ∈M, the following conditions are equivalent

(i) ρ has the Fatou property, i.e.

ρ(fn) ↑ ρ(f) whenever |fn| ↑ |f | ρ− a.e.

(ii) ρ is a left continuous modular, i.e.

ρ(αn f) ↑ ρ(f) whenever αn ↑ 1.

(iii) ρ(f) ≤ lim inf ρ(fn) whenever fn → f ρ-a.e.

A function modular is said to satisfy the ∆2-condition if sup ρ(2fn, Dk) →
0 as k → ∞ whenever Dk decreases to ∅ and sup ρ(fn, Dk) → 0. It was
proved in [16] that ∆2 is equivalent to the equality Eρ = Lρ. The other char-
acterization is as follows: ρ satisfies the ∆2 condition if and only if F -norm
convergence and modular convergence are equivalent.

Definition 1.5.
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(a) A subset C of Lρ is called ρ-bounded if

δρ(C) = sup{ρ(f − g); f, g ∈ C} < ∞,

(b) The sequence {fn} ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn −
f) → 0 as n →∞,

(c) The sequence {fn} ⊂ Lρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n
and m go to ∞,

(d) A subset C of Lρ is called ρ-closed if the ρ-limit of a ρ-convergent
sequence of C always belongs to C.

(e) A subset C of Lρ is called ρ-a.e. compact if every sequence in C has a
ρ-a.e. convergent subsequence in C.

(f) A subset D of Lρ is said to be ρ-complete if every ρ-Cauchy sequence
is ρ-convergent in D.

The above terminology is used because of its formal similarity to the
metric case. Since ρ is far from behaving as a distance, one should be very
careful when dealing with these notions.

Before we give few examples of modular function spaces we will need the
following definition.

Definition 1.6 Let (Ω, Σ, µ) be a measure space. A real function ϕ de-
fined on Ω×<+ will be said to belong to the class Φ if the following conditions
are satisfied

(i) ϕ(ω, u) is a nondecreasing continuous function of u such that ϕ(ω, 0) =
0, ϕ(ω, u) > 0 for u > 0 and ϕ(ω, u) →∞ as u →∞,

(ii) ϕ(ω, u) is a Σ-measurable function of ω for all u ≥ 0,

(iii) ϕ(ω, u) is a convex function of u, for all ω ∈ Ω.

8



For the sake of generality some authors will not assume that ϕ(ω, u) is a
convex function of u. Although the results in this work can be easily gen-
eralized into their setting, it is not the feeling of the author that this will
change anything to the general idea.

Examples.

(1) It is easy to check that Orlicz spaces are modular function spaces.
Similarly Musielak-Orlicz spaces, i.e. spaces determined by a modular
of the form

ρ(f, E) =
∫

E
ϕ(t, |f(t)|)dµ(t),

are modular function spaces, provided ϕ belongs to the class Φ. For
the precise definitions and properties of Musielak-Orlicz spaces see the
book by Musielak [22], where they are called generalized Orlicz spaces.
The particular case when

ϕ(t, s) = sp, for 1 ≤ p < ∞,

gives the classical Lp spaces. The Luxemburg’s norm is the classical
Lp-norm. Moreover we have

ρ(f) = ||f ||pLp .

Let us add that Musielak-Orlicz modular spaces are complete for the
modular [14].

(2) Suppose M is a family of σ-additive measures on (Ω, Σ), and ϕ ∈ Φ.
One can prove that

ρ(f, E) = sup
τ∈M

∫
E

ϕ(t, |f(t)|)dµτ (t),

is a function modular. As an example of function spaces determined
by a function modular of this type we can mention the Lorentz type
Lp-spaces, where

ρ(f, E) = sup
τ∈T

∫
E
|f(t)|pdµτ (t).

Here µ is a fixed σ-finite measure on Ω, T is any set of measurable,
invertible transformations τ : Ω → Ω and µτ (E) = µ(τ−1(E)).
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2 Main result

This work was motivated by recent results [2,19] on uniform Kadec-Klee
property and uniform Opial condition. Looking at the proof it was clear
that the results are of measure theoretical nature. Finally after looking into
the problem more closely one would say that the original result can be found
in [4] as the authors in [18] did notice. We will consider the original approach
in the convex case. Let us add that one can easily adapt the original ideas
into a more general case. As we mentioned before it is our feeling that this
will not add anything substantial to the main result.

Throughout this work Lρ will be a modular function space where ρ is
assumed to be convex. Before we give the main result of this work we need
the following technical lemma; see also [4].

Lemma 2.1 Let ε > 0 and k > 1 be such that k ε < 1. Then for every
f, g ∈ Lρ such that ρ(kf) < ∞ and ρ(1/ε (k − 1)g) < ∞, we have

|ρ(f + g)− ρ(f)| ≤ ε |ρ(kf)− kρ(f)|+ 2 ρ(Cε g),

where Cε = 1/ε (k − 1).
Proof. Put

α = 1− kε, β = ε, γ = (k − 1)ε.

Then we have α + β + γ = 1 and

f + g = α f + βkf + γCεg.

Since ρ is convex we get

ρ(f + g) ≤ α ρ(f) + βρ(kf) + γρ(Cεg).

Hence
ρ(f + g)− ρ(f) ≤ ε (ρ(kf)− kρ(f)) + (k − 1)ερ(Cεg)

which implies

ρ(f + g)− ρ(f) ≤ ε (ρ(kf)− kρ(f)) + ρ(Cεg).
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On the other hand if we put

α =
1

1 + kε
, β =

ε

1 + kε
, γ =

ε(k − 1)

1 + kε
,

then f = α(f + g) + βkf + γ(−Cεg). Hence

ρ(f)− ρ(f + g) ≤ ε [ρ(kf)− kρ(f)] + ε(k − 1)ρ(−Cεg).

This will imply

ρ(f)− ρ(f + g) ≤ ε [ρ(kf)− kρ(f)] + ρ(Cεg).

The proof is therefore complete.

From now on we will assume that ρ is additive, i.e.

ρ(f, A ∪B) = ρ(f, A) + ρ(f, B),

whenever A, B ∈ Σ such that A ∩ B = ∅. Clearly this implies ρ(f, A) =
ρ(f 1A). This may seem strong, but many interesting examples lead to
additive modulars. For example, any modular generated by a functionnal
measure.

The next result states the main result of this work.

Theorem 2.1. Let {fn} ⊂ Lρ be ρ-a.e. convergent to 0. Assume there
exists k > 1 such that

sup
n

ρ(kfn) = M < ∞.

Let g ∈ Eρ, then we have

lim
n→∞

(
ρ(fn + g)− ρ(fn)

)
= ρ(g).

Proof. Since {fn} converges ρ-a.e. to 0, then by Egoroff’s Theorem, there
exists an increasing sequence of sets Hk ∈ P such that Ω =

⋃
Hk and {fn}

converges uniformly to f on every Hk. On the other hand we have

|ρ(fn + g)− ρ(fn)− ρ(g)| ≤ |ρ(fn + g,Hm)− ρ(fn, Hm)− ρ(g,Hm)|
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+|ρ(fn + g,Hc
m)− ρ(fn, H

c
m)− ρ(g,Hc

m)| ,
where Ac denotes the complement of the subset A. Using Lemma 2.1 we get

|ρ(fn + g,Hm)− ρ(g,Hm)| ≤ ε (ρ(kg,Hm)− kρ(g,Hm)) + 2ρ(Cεfn, Hm),

for every ε > 0 such that ε k < 1. Since {fn} converges uniformly to 0 on
every Hm we have

lim sup
n→∞

|ρ(fn + g,Hm)− ρ(fn, Hm)− ρ(g,Hm)| ≤ ερ(kg).

Using the same ideas we get

lim sup
n→∞

|ρ(fn + g,Hc
m)− ρ(fn, H

c
m)− ρ(g,Hc

m)| ≤ ε lim sup
n→∞

ρ(kfn)+2ρ(Cεg,Hc
m)+ρ(g,Hc

m).

Hence

lim sup
n→∞

|ρ(fn + g,Hc
m)− ρ(fn, H

c
m)− ρ(g,Hc

m)| ≤ ε sup
n

ρ(kfn)+2ρ(Cεg,Hc
m)+ρ(g,Hc

m).

Therefore

lim sup
n→∞

|ρ(fn + g)− ρ(fn)− ρ(g)| ≤ ε ρ(kg)+ε sup
n

ρ(kfn)+2ρ(Cεg,Hc
m)+ρ(g,Hc

m).

Let m goes to ∞ and using the fact that g ∈ Eρ, we get

lim sup
n→∞

|ρ(fn + g)− ρ(fn)− ρ(g)| ≤ ε ρ(kg) + ε sup
n

ρ(kfn).

Finally we let ε goes to 0 to get

lim sup
n→∞

|ρ(fn + g)− ρ(fn)− ρ(g)| ≤ 0.

The proof is therefore complete.

As a corollary to this theorem one can get the following.

Corollary 2.1 Let p ≥ 1 and {fn} be a sequence of Lp-uniformly bounded
functions on a measure space. Assume that {fn} converges almost everywhere
to f ∈ Lp. Then

lim inf
n→∞

||fn||p = lim inf
n→∞

||fn − f ||p + ||f ||p.
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When p = 1, the conclusion of Corollary 2.1 gives the main result of [2,19].

Let us add that when p < 1 the conclusion of Corollary 2.1 is still true. This
will not be a simple deduction from Theorem 2.1 since the function ϕ(t) = tp

is not convex. A technical assumption [4] can be added to get a more general
result (see also [18]).

Theorem 2.2 Let ε > 0 and {fn} ⊂ Lρ be ρ-a.e. convergent to 0. As-
sume there exists k > 1 such that

sup
n

ρ(kfn) = M < ∞.

Let f ∈ Eρ such that ρ(f) ≥ ε, then we have

lim inf
n→∞

ρ(fn) + ε ≤ lim inf
n→∞

ρ(fn + f).

The proof is obvious using the conclusion of Theorem 2.1. This is a kind of

Opial property. First let us give the following definition.

Definition 2.1 We will say that Lρ satisfies the ρ-a.e.-Opial property if
for every {fn} ⊂ Lρ ρ-a.e. convergent to 0 such that there exists k > 1 for
which

sup
n

ρ(kfn) = M < ∞

then for every f ∈ Eρ not equal to 0 we have

lim inf
n→∞

ρ(fn) < lim inf
n→∞

ρ(fn + f).

We will say that Lρ satisfies the ρ-a.e.-uniform Opial property if for every
ε > 0 there exists η > 0 such that for every {fn} ⊂ Lρ ρ-a.e. convergent to
0 such that there exists k > 1 for which

sup
n

ρ(kfn) = M < ∞

then for every f ∈ Eρ such that ρ(f) ≥ ε we have

lim inf
n→∞

ρ(fn) + η ≤ lim inf
n→∞

ρ(fn + f).
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Opial’s property plays an important role in the study of convergence of
iterates of nonexpansive mappings and of the asymptotic behavior of nonlin-
ear semigroups [10,13,17,25,26,27]. Clearly the ρ-a.e.-uniform Opial property
implies ρ-a.e.-Opial property.
Therefore the conclusion of Theorem 2.2 means that Lρ satisfies the ρ-a.e.-
uniform Opial property.

The next result deals with a property similar to Kadec-Klee property
[6,7,11,12].

Definition 2.2 We will say that Lρ satisfies ρ-a.e.-Kadec-Klee property
if for every ε > 0 and every r > 0 there exists η > 0 such that for every
{fn} ⊂ Eρ ρ-a.e. convergent to f ∈ Eρ such that there exists k > 1 for which

sup
n

ρ(k [fn − f ]) = M < ∞

and ρ(fn) ≤ r for every n ≥ 1 we have

ρ(f) ≤ r(1− η)

provided that

sep
{

1

2
fn

}
= inf

{
ρ

(
(fn − fm)

2

)
; n 6= m

}
> r ε.

We will say that Lρ satisfies ρ-a.e.-uniform Kadec-Klee property if the above
still holds for every ε.

Theorem 2.3 Under the assumptions of Theorem 2.1, the modular func-
tion space Lρ satisfies ρ-a.e.-uniform Kadec-Klee property.
Proof. Let ε > 0, r > 0 and {fn} be as in Definition 2.2 ρ-a.e. convergent
to f . Theorem 2.1 implies that

lim inf
n→∞

ρ(fn − f) + ρ(f) = lim inf
n→∞

ρ(fn).

Our assumption on {fn} implies that

lim inf
n→∞

ρ(f − fn) ≥ r
ε

2
.
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Therefore

ρ(f) ≤ r
(
1− ε

2

)
.

The proof is complete.

If the modular ρ is subadditive then one does not need to take ρ((fn −
fm)/2) in Definition 2.2 we could take ρ(fn − fm). This is the case when
Lρ = L1 (see [2,4,19]).

3 Application to fixed point property

Fixed point theory for nonexpansive mappings has its origins in the 1965
existence theorems [5,9,15]. Although such mappings are natural extensions
of the contraction mappings, it was clear from the outset that the study of
nonexpansive mappings required techniques which go far beyond the purely
metric approach. For more on the fixed point property see [1,8,14].

Definition 3.1. Let C be a subset of a modular space Lρ and let T : C →
C be an arbitrary mapping.

(1) T is called a strict ρ-contraction if there exists λ < 1 such that

ρ(T (f)− T (g)) ≤ λ ρ(f − g)

for all f, g ∈ C.

(2) T is said to be ρ-nonexpansive if

ρ(T (f)− T (g)) ≤ ρ(f − g)

for all f, g ∈ C.

(3) f ∈ C is said to be a fixed point of T if T (f) = f . The fixed point set
of T will be denoted Fix(T ).

C will be said to have the fixed point property if every ρ-nonexpansive selfmap
defined on C has a fixed point.
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In many cases it is more convenient to verify assumptions related to the
modular than the associated norm. Since the latest is given indirectly.
Before we give a fixed point result for ρ-nonexpansive mappings, let us show
how a ρ-strict contraction has a fixed point.

Theorem 2.4 Let C be ρ-complete ρ-bounded subset of Lρ and T : C → C
be a ρ-strict contraction. Then T has a unique fixed point z ∈ C. Moreover
z is the ρ-limit of the iterate of any point in C under the action of T .
Proof. Let k ∈ (0, 1) be such that

ρ(T (x)− T (y)) ≤ k ρ(x− y)

for every x, y ∈ C. Let x ∈ C be fixed. Then we have

ρ(T (n+h)(x)− T n(x)) ≤ kn ρ(T h(x)− x) ≤ knδρ(C)

for every n, h ∈ N . Therefore {T n(x)} is ρ-Cauchy. Since C is ρ-complete
we deduce that {T n(x)} ρ-converges to z ∈ C. Let us show that z ∈ Fix(T ).
Then from ρ(z − T n(x)) → 0, we get

ρ(T (z)− T n(x)) ≤ kρ(z − T (n−1)(x)) → 0.

This clearly implies that {T n(x)} ρ-converges to T (z). But

ρ

(
(z − T (z))

2

)
≤ ρ(z − T n(x)) + ρ(T n(x)− T (z)),

for every n ≥ 1. This implies that ρ
(

(z−T (z))
2

)
= 0 which implies that z is a

fixed point. It is obvious that z is the only fixed point.

Let C be a ρ-complete, ρ-bounded subset of Lρ. Assume that C is star-
shaped, i.e. there exists x0 ∈ C such that αx+(1−α)x0 ∈ C provided x ∈ C
and α ∈ [0, 1]. Let T : C → C be ρ-nonexpansive and ε < 1 be a positive
number. Set

Tε(x) = (1− ε)T (x) + εx0.

Then Tε defines a ρ-strict contraction on C. Theorem 2.4 implies that Tε

has a unique fixed point xε. Clearly we have xε = (1 − ε)T (xε) + εx0 which
implies

ρ(xε − T (xε)) ≤ ρ(ε(T (xε)− x0)) ≤ εδρ(C)
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where we used the fact that ρ is convex. Put xn = x1/n for n ≥ 1. Then we
have

lim
n→∞

ρ(xn − T (xn)) = 0.

Theorem 2.5 Let C be a starshaped subset of Eρ. Assume that C is
ρ-a.e. compact. Suppose that there exists k > 1 such that

δρ(k C) = sup{ρ(k(x− y)); x, y ∈ C} < ∞.

Then any ρ-nonexpansive map T ; C → C has a fixed point.
Proof. There exists a sequence {xn} ⊂ C such that xn = (1−εn)T (xn)+εnx0

where x0 is the point from which C is starshaped and εn → 0 as n → ∞.
Since C is ρ-a.e. compact, there exists {xn′} a subsequence of {xn} that is
ρ-convergent. Call x its limit. Since k > 1, we have δρ(C) ≤ δρ(k.C) < ∞.
Then

ρ
(

x−T (x)
2

)
≤ ρ(x− xn′) + ρ(xn′ − T (x))

= ρ(x− xn′) + ρ
(
(1− εn′)(T (xn′)− T (x)) + εn′(x0 − T (x))

)
≤ ρ(x− xn′) + (1− εn′)ρ(xn′ − x) + εn′δρ(C)
→ 0

which implies that x = T (x). The proof is therefore complete.

In [6,7] the uniform-Kadec-Klee property is related to the fixed point
property through the normal structure property via Kirk’s theorem [15]. One
can indeed prove an analogous to this in modular function spaces. The result
will be weaker than the conclusion of Theorem 2.5.

The author would like to thank the referee for the suggested remarks.
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